Simple acyclic graphoidal covers in a graph

نویسندگان

  • S. Arumugam
  • I. Sahul Hamid
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced Acyclic Graphoidal Covers in a Graph

An induced acyclic graphoidal cover of a graph G is a collection ψ of open paths in G such that every path in ψ has atleast two vertices, every vertex of G is an internal vertex of at most one path in ψ, every edge of G is in exactly one path in ψ and every member of ψ is an induced path. The minimum cardinality of an induced acyclic graphoidal cover of G is called the induced acyclic graphoida...

متن کامل

On Graphoidal Covers of Bicyclic Graphs

A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by η(G) or η. Also, If every me...

متن کامل

Induced label graphoidal graphs

Let G be a non-trivial, simple, finite, connected and undirected graph of order n and size m. An induced acyclic graphoidal decomposition (IAGD) of G is a collection ψ of non-trivial and internally disjoint induced paths in G such that each edge of G lies in exactly one path of ψ. For a labeling f : V → {1, 2, 3, . . . , n}, let ↑ Gf be the directed graph obtained by orienting the edges uv of G...

متن کامل

Induced Graphoidal Covers in a Graph

An induced graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ, every edge of G is in exactly one path in ψ and every member of ψ is an induced cycle or an induced path. The minimum cardinality of an induced graphoidal cover of G is called the in...

متن کامل

Detour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel

A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path  $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A  detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex  of at most on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2007